Pearson

Mark Scheme (Results)

January 2017

International GCSE
Physics (4PH0) Paper 2P
Pearson Edexcel Certificate in Physics (KPH0) Paper 2P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

January 2017
Publications Code 4PHO_2P_1701_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Total for question = 6 marks

Question number	Answer	Notes	Marks
2 (a)	(sum of) clockwise moments equals (sum of) anti-clockwise moments; (for a system) to be balanced / in equilibrium;		2
(b) (i)	measure mass of plastic strip (in kg); multiply mass by g ;	allow multiply by 10 / 9.8 / 9.81 allow idea of setting balance to zero for 1 mark if no other mark scored	2
	any 1 of: use a ruler with smaller divisions; use a mm ruler; use a balance that measures to more decimal places;		1
(iii)	moment $=$ force \times (perpendicular) distance (from the pivot);	allow correct symbols e.g. moment $=\mathrm{Fxd}$ condone use of M or m for moment	1
(iv)	calculates one moment correctly; correct use of principle of moments; evaluation;	allow distances in cm throughout 0.4 (N) gets 1 mark max.	3
	$\begin{aligned} & \text { e.g. } \\ & 0.2 \times 0.3=0.06 \\ & 0.06=0.1 \times F \\ & (\text { force }=) 0.6(\mathrm{~N}) \end{aligned}$		
(v)	any 1 of:	ignore references to mass/weight of rule	1
	idea that calculated force includes weight of beaker / weight of beaker should be subtracted; mass of paperclip / string not considered; centre of mass of ruler may not be at 50 cm;	allow mass/weight of beaker not considered	

Total for question $=10$ marks

Question number	Answer	Notes	Marks
3 (a)	B - sound waves are transverse;	1	
(b) (i)	calculation of time period; substitution into correct frequency equation; evaluation; e.g. (time period $/ T)=0.02$ (s) $(f=) 1 / 0.02$ $(f=) 50(H z)$	allow ecf for incorrect time period	3
(ii)	allow 0.02 seen anywhere	$16.7,100(\mathrm{~Hz})$ get line drawn has smaller amplitude than existing line throughout; line drawn has higher frequency (pitch) throughout;	ignore vertical position of line

Total for question $=6$ marks

(iii)	any 2 of: MP1. idea of inverse relationship; MP2. idea that each additional layer gives a smaller decrease in temperature difference; MP3. idea of no effect on temperature difference with more than 2 layers;	allow pattern statements negative correlation	2
(iv)	repeat AND \{average (mean)/discard anomalies\};		1

Total for question = 11 marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 5 (a) \& ```
conversion of hours to seconds;
substitution and rearrangement of equation;
evaluation;
e.g.
time = 40 x 60 < 60 (= 144000(s))
energy = 50 x 144000
(energy) = 7200000(J)
``` \& \begin{tabular}{l}
no mark for equation as given in paper \\
seen anywhere in working \\
allow 2000, 120000 \\
(J) for 2 marks
\end{tabular} \& 3 \\
\hline (b) \& \begin{tabular}{l}
MP1. energy is wasted / lost (to the surroundings) as thermal energy; \\
MP2. idea that light energy (output) is less than the electrical / input energy;
\end{tabular} \& \begin{tabular}{l}
ignore statements about student being right/wrong allow heat allow RA e.g. 'heat is not useful' \\
e.g. 'not all electrical energy is converted to light \({ }^{\prime}\)
\end{tabular} \& 2 \\
\hline (c) \& \begin{tabular}{l}
MP1. two coils of wire; \\
MP2. iron core; \\
MP3. more turns (of wire) on the primary coil than on the secondary coil;
\end{tabular} \& \begin{tabular}{l}
marks can be awarded from diagram if clear \\
allow 'magnetically soft' core \\
allow input for primary and output for secondary
\end{tabular} \& 3 \\
\hline \begin{tabular}{l}
(d) (i) \\
(ii)
\end{tabular} \& ```
input power = output power;
substitution into a correct equation;
rearrangement;
evaluation;
e.g.
230 x IP = 12 x 4.2
(Ip =) 12 x 4.2/230
(IP =) 0.22 (A)
``` \& \begin{tabular}{l}
allow
\[
V_{P} I_{P}=V_{S} I_{S}
\] \\
rearrangements \\
Use of 1,2 in place of P,S \\
0.21 (A) gets 2 marks only \\
allow 0.2, 0.21913...
\end{tabular} \& 1

3

\hline
\end{tabular}

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 7 (a) | D - newtons per square metre ($\mathrm{N} / \mathrm{m}^{2}$); | | 1 |
| (b) | any 3 of:
 MP1. air is heated / temperature of air increases;
 MP2. (air) molecules move faster / gain kinetic energy;
 MP3. more (frequent) collisions between molecules and walls;
 MP4. molecules collide with walls with more force; | allow particles for molecules throughout allow pressure is proportional to (kelvin) temperature
 allow molecules collide harder with walls
 allow rate of change of momentum for force | 3 |

Total for question $=4$ marks

